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Summary 

Stem cell transplantation is a promising therapeutic strategy to enhance axonal regeneration after 

spinal cord injury. Unrestricted somatic stem cells (USSC) isolated from human umbilical cord blood 

is an attractive stem cell population available at GMP grade without any ethical concerns. It has been 

shown that USSC transplantation into acute injured rat spinal cords leads to axonal regrowth and 

significant locomotor recovery, yet lacking cell replacement. Instead, USSC secrete trophic factors 

enhancing neurite growth of primary cortical neurons in vitro. Here, we applied a functional secretome 

approach characterizing proteins secreted by USSC for the first time and validated candidate neurite 

growth promoting factors using primary cortical neurons in vitro. By mass spectrometric analysis and 

exhaustive bioinformatic interrogation we identified 1156 proteins representing the secretome of 

USSC. Using Gene Ontology we revealed that USSC secretome contains proteins involved in a 

number of relevant biological processes of nerve regeneration such as cell adhesion, cell motion, blood 

vessel formation, cytoskeleton organization and extracellular matrix organization. We found for 

instance that 31 well-known neurite growth promoting factors like, e.g., neuronal growth regulator 1, 

NDNF, SPARC and PEDF span the whole abundance range of USSC secretome. By the means of 

primary cortical neurons in vitro assays we verified SPARC and PEDF as significantly involved in 

USSC mediated neurite growth and therewith underline their role in improved locomotor recovery 

after transplantation. From our data we are convinced that USSC are a valuable tool in regenerative 

medicine as USSC’s secretome contains a comprehensive network of trophic factors supporting nerve 

regeneration not only by a single process but also maintained its regenerative phenotype by a 

multitude of relevant biological processes.  
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Introduction 

Injury to the spinal cord leads to a multiple damaging process including axonal contusion and 

transection with subsequent degeneration, massive apoptosis of oligodendrocytes and break-down of 

the blood-spinal cord barrier accompanied by invasion of immune cells resulting in sustained motoric 

and sensory impairments. Glial-fibrotic scarring and the lack of growth promoting factors impair 

axonal regrowth which is currently the main target for therapeutic interventions to treat spinal cord 

injury. In addition, modulation of neuronal survival, remyelination of axons and the immune reaction 

could promote functional regeneration (1-3). The inhibition of axonal regeneration might be overcome 

by exogenous application of growth factors or by transplantation of stem cells directly into the lesion 

site, which locally release trophic factors and thus support axonal regrowth. For clinical applications, 

stem cells should be ideally available on a clinical scale without ethical concerns or invasive 

interventions. Human umbilical cord blood (hUCB) is an alternative stem cell source including cells 

similar to mesenchymal stem cells from bone marrow (BM-MSC) and can be easily expanded as 

adherent cells in vitro without any risk for the donor. Besides MSC, hUCB contains unrestricted 

somatic stem cells (USSC) (4) which can be clearly distinguished from BM-MSC as well as from 

hUCB derived MSC (CB-MSC) by their immunological behavior (5-6), their transcriptome (7), the 

inability to differentiate into adipocytes (8) and by a specific Hox-gene expression pattern (9). 

Additionally, USSC exhibit a significant lower senescence rate and possess longer telomeres 

compared to CB-MSC and BM-MSC. As USSC can be easily isolated at GMP (good manufacturing 

practice) grade (10) and expanded on a clinical scale, USSC are a promising tool for transplantation 

studies. In a recent study, we have demonstrated that after transplantation into the acute injured rat 

spinal cord, USSC induce significant axon regrowth into the lesion side and effectively improve long-

term functional locomotor recovery (11). Moreover, USSC transplantation promotes tissue sparing 

which might contribute to the locomotor improvement. Although USSC were shown to differentiate 

into neuronal-like cells under in vitro conditions (4, 12) replacement of endogenous cells in the injured 

spinal cord was not detected supporting the hypothesis that transplanted stem cells despite their lack of 
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differentiation enhance regeneration by paracrine regulation or direct interactions with endogenous 

cells. In vitro studies confirmed the potential of USSC to promote neurite growth. Incubation of 

primary rat dorsal root ganglion neurons or cortical neurons with USSC conditioned medium (USSC-

CM) significantly enhanced neurite growth, hence considering USSC-CM is an ideal tool to 

investigate USSC-derived neurite growth promoting factors. Kögler et al. (13) provided first evidence 

using cytokine specific antibody arrays that USSC secrete axon growth promoting and neuroprotective 

factors in vitro such as stromal derived factor-1 (SDF-1) (14-15), leukemia inhibitory factor (LIF) (16) 

and vascular endothelial growth factor (VEGF) (17-18). In comparison, BM-MSC also secrete trophic 

factors which enhance neurite growth in vitro, but the main trophic factors responsible for beneficial 

effects on neurite growth remain to be elucidated (19). Neurite growth promoting effects of BM-MSC 

seem to be at least partially mediated by brain derived neurotrophic factor (BDNF) and glial derived 

neurotrophic factor (GDNF) as demonstrated by neutralization of these neurotrophins using antibodies 

(20-21). Classical neurotrophic factors, e.g. nerve growth factor (NGF), BDNF and neurotrophin-3 

(NT-3), have not been identified in the USSC secretome yet, and other factors released by USSC 

which promote neurite outgrowth have not been described in detail. Antibody array analysis of the 

secretome of other somatic stem cell populations of hUCB revealed that the cells release a large panel 

of cytokines and growth factors (22). Additionally, these cells express genes related to neurogenesis 

and blood vessel development as determined by gene expression profiling. For the unbiased 

identification of secreted proteins proteomic approaches including mass spectrometry is the method of 

choice. For example, CB-MSC secrete typical cartilage-related proteins during chondrogenic 

differentiation shown by nanoLC MALDI-TOF/TOF (23). Currently, the secretome of several stem 

cell types has been investigated by mass spectrometry (reviewed by (24-25)). However, a secretome 

study of USSC derived from hUCB by LC-MS/MS focusing on nerve regeneration has not been 

performed, yet. 

Here, we present the first study aiming at the characterization of the regeneration-supportive 

phenotype of USSC by detailed secretome analysis using protein mass spectrometry and exhaustive 
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bioinformatic interrogation as well as subsequent functional validation of candidate neurite growth 

promoting proteins.  

 

Experimental procedures 

Cultivation of USSC 
SA 5/73 USSC were isolated from human umbilical cord blood as described by Kögler et al. (4), and 

have been provided by the Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich 

Heine University Medical Center, Düsseldorf, Germany. In brief, cells were separated from fresh 

umbilical cord blood by Ficoll followed by red blood cell lysis with ammonium chloride. 

Mononuclear cells were plated in DMEM supplemented with 30% fetal bovine serum (FBS), 

dexamethasone (10-7 M, Sigma Aldrich), 2 mM glutamine and penicillin/streptomycin (100 U/ml). 

Subsequently, USSC clones were picked, expanded in dexamethasone-free medium and characterized 

by Hox gene (Hox-negative) (9) and DLK-1 (DLK-positive) (8) expression. For expansion, USSC 

were cultured in expansion medium containing DMEM (Lonza) supplemented with 30% heat-

inactivated FBS (Biochrom), 2 mM glutamine (Invitrogen) and penicillin/streptomycin (100 U/ml, 

Invitrogen) at 37 °C, 5 % CO2 and 98 % humidity. USSC have been used in passage 6-7 for all 

experiments. 

 

Preparation of serum-free conditioned medium 
To identify low abundant secreted proteins USSC were cultured in serum-free medium. USSC were 

grown to a subconfluency of 80-90 % in expansion medium, washed with PBS for three times to 

remove FBS and then incubated with serum-free N2 medium modified according to Bottenstein and 

Sato (26) for 48 h. Medium was changed and cells have been incubated for another 48 h. For 

secretome studies, the 2nd batch of conditioned medium was used to exclude FBS effects. N2 medium 

is a 1:4 mixture of Dulbecco’s modified Eagle’s medium with Ham‘s F12, 2 mM glutamine (all 

Invitrogen), 5 µg/ml insulin, 30 nM sodium selenite, 100 µM putrescine, 20 nM progesterone and 5 
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µg/ml transferrin (all Sigma Aldrich). The conditioned medium has been collected, centrifuged at 

1500 x g for 5 min at 4°C to remove cell fragments and then stored at -80°C until application to 

cortical neurons or secretome analysis. 

 

Protein concentration 
Different strategies have been used to concentrate proteins from USSC conditioned medium. Proteins 

have been (A) precipitated using a modified method published by Chevallet et al. (27), or (B) 

concentrated by lyophilisation. Briefly, for protein precipitation (method A) 20 ml of conditioned 

medium was mixed with 10 % sarkosyl NL (Sigma Aldrich). After adding trichloracetic acid (Sigma 

Aldrich) to a final concentration of 7.5 %, samples were incubated on ice for 2h with subsequent 

centrifugation at 10,000 x g and 4 °C for 10 min. The pellet was resuspended in 2 ml ice cooled 

tetrahydrofuran (THF, Fluka). Afterwards, samples were centrifuged again at 10,000 x g and 4 °C for 

10 min. The pellet was washed carefully with 2 ml THF and dissolved in 100 µl SDS sample buffer 

consisting of 600 mM DTT, 30 % Glycerin, 12 % SDS, 150 mM Tris/HCl, pH 7.0 (all Sigma Aldrich). 

After SDS-gel-electrophoresis (2 cm, 10 minutes) and silver staining according to Nesterenko et al. 

(28), the resulting lane was cut out in one slice. The gel slice was decolorized with a 1:1 mix of 30 mM 

sodium thiosulfate and 100 mM potassium hexacyanoferrate (III) (both Sigma Aldrich), washed and 

the proteins were digested with 2 µg trypsin (Serva) overnight at 37 °C. Resulting peptides were 

extracted with 50 % acetonitrile (Biosolve) and 0.05 % TFA. For protein concentration by 

lyophilisation (method B) 20 ml of conditioned medium were lyophilized, reconstituted in 250 µl SDS 

sample buffer and 10 µl (2 µg/µl) was run into short SDS-gel, silver stained and subsequently digested 

and extracted as described above. Furthermore, a SDS-PAGE was performed and 12 lanes have been 

cut out for further analysis (method C). In table S1 in supplementary material the methods are 

summarized.   
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LC-MS/MS 
Peptides were separated using a UltiMate 3000 RSCLnano System (Dionex LC Packings [now 

Thermo Scientific]) with a C18-Pepman column (2 cm, 75 µm I.D., 3 µm particle size, 100 AA) as 

precolumn and a C18-Pepmap column (25 cm or 50 cm, 75 µm I.D., 2 µm particle size,  100 AA) as 

main column. A gradient of 0.1 % FA (Fluka) to 0.1 % FA/60 % acetonitrile over 120-150 minutes 

and a constant flow rate of 300 nl/min was used to elute peptides directly via electrospray (voltage 1.2-

3.0 keV, capillary temperature 310 °C) into the LTQ Orbitrap Velos or LTQ Orbitrap Elite mass 

spectrometer (both Thermo Fisher Scientific). All MS spectra were recorded in positive ion mode with 

a mass range of 300-2000 m/z and a resolution of 35.000 (Orbitrap Velos) or 350-1700 m/z and a 

resolution of 60.000 (Orbitrap Elite). +2, +3 and higher charged (only Orbitrap Velos) monoisotopic 

precursors were isolated with a width of 2.0 Da and fragmented using a normalized collision energy of 

35 % for CID within the linear ion trap.  A TOP20-data-dependent acquisition with polysiloxan as a 

lock mass was applied and dynamic exclusion activated (repeat count 1, duration 30 sec on Orbitrap 

Velos and 45 sec on Orbitrap Elite). Seven independent USSC secretomes were analyzed.  

 

MS-Data analysis 
Proteins were identified using Proteome Discoverer (Version 1.4, Thermo Fisher Scientific 

http://www.thermoscientific.com/en/product/proteome-discoverer-software.html) including Mascot 

search engine (Version 2.4.1, Matrix Science) (29). The UniProtKB/Swiss-Prot database (version from 

2014/09, total entries: 546.439) was searched with a mass tolerance of 10 ppm (MS-mode) and 0.4 Da 

(MS/MS mode), enzyme specificity was set to trypsin and two missed cleavage sites were considered 

during the search against human sub-database. Mass range setting was 350-5000 Da. 

Carbamidomethylation of cysteine was set as fixed modification. Oxidation of methionine was 

accepted as variable modification. Proteins were assembled by Proteome Discoverer with a Mascot 

threshold for protein identification set ≥ 50.0 and one unique peptide. For positive identification we 

considered a FDR of < 1 % on peptide level (high peptide confidence, default p < 0.01). For FDR 

http://www.thermoscientific.com/en/product/proteome-discoverer-software.html
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calculation we applied a decoy approach based on reversed protein sequences using Proteome 

Discoverer. The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier PXD002241 (30). Proteins 

were grouped by Gene ontology (GO) slim term cellular component and biological process.  

 

Bioinformatic analyses 
The prediction of secreted proteins was performed with SecretomeP (31) as well as with SignalP (32). 

A NN-score > 0.6 (FDR < 0.05) was interpreted as a high probability of secretion via a non-classical 

pathway using Secretome P. We further applied functional annotation clustering to further characterize 

the USSC secretome using DAVID database (DAVID Bioinformatics Resources 6.7, (33), 

http://david.abcc.ncifcrf.gov/home.jsp) including Gene Ontology (GO) terms containing the sub-

ontology biological process (defined by the Gene Ontology Consortium) with a false discoverer rate 

(FDR) < 0.05. Secretion of all UniProt listed proteins were predicted by SecretomeP and 

supplemented by proteins which are assigned to the UniProt term secreted or extracellular as well as 

classically secreted proteins with signal peptide predicted by SignalP. The 11.238 proteins served as 

background list for GO term annotation in DAVID database. 

An absolute quantification of protein concentration was performed using Hi-N in Progenesis QI for 

proteomics 2.0 (Nonlinear Dynamics, Newcastle upon Tyne, see 

http://www.nonlinear.com/progenesis/qi-for-proteomics/v2.0/faq/how-does-hi-n-work.aspx for further 

details) based on a publication by Silva et al. (34) using proteins concentrated by method A (TCA 

precipitation) and B (lyophilisation). Briefly, the Hi-N method considers all peptides for 

quantification. In the case if more than three peptides are available Hi-N includes the three most 

abundant unique (non-conflicting) peptides to calculate the absolute concentration. In contrast to top-3 

method (33) the Hi-N algorithm applies the average and not the sum of the peptide intensities.  

Transferrin with a known concentration of 5 µg/ml (64.8 pmol/ml) was applied as single point 

calibrator and the protein signals were adjusted to transferrin for absolute quantification. 

http://david.abcc.ncifcrf.gov/home.jsp
http://www.nonlinear.com/progenesis/qi-for-proteomics/v2.0/faq/how-does-hi-n-work.aspx
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Preparation and cultivation of primary rat cortical neurons 
To test potential neurite growth promoting factors found in USSC secretome, primary cortical neurons 

were prepared from E15 Wistar rats as described before (11, 35) and subsequently incubated with 

serum-free conditioned medium derived from USSC. N2 medium as well as conditioned medium 

derived from primary cortical astrocytes prepared from p0-p1 Wistar rats (11, 36) served as negative 

and positive controls, respectively. Embryonic rat cortical neurons were seeded on 96 well plates 

(Costar) pre-coated with 1 mg/ml poly-D-lysine and 13 µg/ml laminin (both Sigma Aldrich). A cell 

density of 40,000/cm² was proven to be optimal for automated neurite growth analyses. Cells were 

incubated at 37 °C, 10 % CO2 and 98 % humidity.  

 

Neutralization and stimulation experiments 
To influence activity of potential neurite growth promoting factors in USSC-CM, neutralizing 

antibodies have been incubated for 2 h at 37 °C with USSC-CM prior to incubation of primary cortical 

neurons. Following antibodies have been used: anti-SPARC (secreted protein acidic and rich in 

cysteine, also known as Osteonectin, human, monoclonal produced in mouse, sc-33645, Santa Cruz 

Biotechnology), 4 µg/ml; anti-PEDF (pigment epithelium-derived factor, also known as serpinF1, 

human, polyclonal produced in rabbit, sc-25594, Santa Cruz Biotechnology), 4 µg/ml; anti-CST3 

(Cystatin C, human, polyclonal produced in goat, P01034, R&D Systems), 3 µg/ml. Since antibodies 

have been solved in PBS, USSC-CM with appropriate amounts of PBS has been used as control.  

On the other hand, selected recombinant proteins were applied in non-conditioned N2 control medium 

to stimulate neurite growth. Recombinant proteins have been diluted as follows: SPARC (C388, 

novoprotein), 3 µg/ml; PEDF (P3662, Abnova), 30 ng/ml. 

 

Immunocytochemical staining of cortical neurons  
After 48 h of cultivation, cortical neurons were fixed with 3.7 % formaldehyde (Merck) for 15 min 

and carefully washed with PBS. For immunocytochemical analysis, fixed cells were incubated with 
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blocking solution containing 10 % normal goat serum (Sigma Aldrich) and 0.03 % Triton x-100 

(Sigma Aldrich) for 1 h. Staining was performed using a neuron specific anti-β-III-tubulin (Tub) 

antibody (rabbit, polyclonal, Sigma Aldrich, 1:500 dilution in blocking buffer) over night at 4 °C. 

After washing with PBS, secondary antibody (goat anti-rabbit, Alexa 488, Invitrogen, 1:500 dilution) 

was incubated for 4 h at room temperature. DAPI (4',6-diamidino-2-phenylindole) staining was 

performed to label all cell nuclei.  

 

Analyses of neurite growth  
High content screening of cortical neurons was performed in vitro with a Thermo Scientific 

Cellomics® ArrayScan® VTI HCS Reader and the Neuronal Profiling v3.5 BioApplication software 

(http://www.thermoscientific.com/en/products/cellular-imaging-analysis.html). Plates were imaged 

with a 10x objective (25 images per well) and simultaneously analyzed. For quantification, only Tub-

positive structures with a DAPI-positive nucleus were included in cell counts. Following parameters 

were used for quantification: nucleus identification (iso data > -0,119; segment intensity > 80), 

nucleus validation  (size 7 – 110), cell body identification (iso data > 0; minimum 1 cell body; seed 

segmentation; cell body segmentation = 2), cell body validation (1 nucleus; cell body size 30-1,050; 

total cell intensity 20,450-521,307), neurite identification (identification modifier = -0.938; length 

255; point resolution 2; gap tolerance = 5), neurite validation (neurite length 10 – 600; neurite 

intensity 0 – 4,095). Absolute numbers of neurons per well and total neurite length per neuron were 

used for analyses of different culture conditions. Significance of neurite growth was assessed by 

paired Student’s t-test comparing median neurite growth from six wells per condition and experiment 

with appropriate control condition. Neurite growth was considered to be significantly different at p < 

0.05. All data are presented as a mean relative neurite growth (%) of at least three experiments ± SEM. 

 

http://www.thermoscientific.com/en/products/cellular-imaging-analysis.html
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Results 

Characterization of USSC secretome by mass spectrometry 

The first evidence that the regenerative potential of USSC is likely to rely on paracrine mechanisms 

was obtained since we showed that USSC secrete factors which stimulate neurite growth of cultured 

dorsal root ganglion neurons and cortical neurons (11). As a first approach to test which molecular 

class mediates the trophic functions of USSC the supernatant was heated to 80°C for 5 min. The 

abolished neurite growth potential (data not shown) suggests that temperature-sensitive proteins are 

likely to enhance neurite growth. Therefore, we set-up a workflow analyzing serum-free supernatants 

of USSC using nano LC-ESI-MS/MS to identify proteins secreted by USSC. For protein preparation, 

we applied different methods to obtain a comprehensive protein catalogue of the USSC secretome 

(table S1 in supplementary material). Altogether, we identified 1520 proteins in USSC secretome 

(table S2 in supplementary material). Due to possible contaminations of conditioned medium by 

proteins originating from dead cells, not all identified proteins are likely to be secreted or 

extracellularly localized. Based on UniProt annotation, 993 proteins were classified as being 

potentially localized extracellularly and 118 proteins to be present at the cell surface (Fig. 1A, 

multiple protein entries possible). The USSC secretome further includes 884 membrane associated 

proteins which could result from shedding. For further identification of secreted proteins, SignalP 4.0 

algorithm was applied. We categorized 385 proteins to be classically secreted and – using SecretomeP 

2.0 algorithm – 276 proteins to be potentially secreted via non-classical pathways, remaining 487 

proteins to be localized extracellular predicted by UniProt annotation (table S2 in supplementary 

material). Eight proteins which have been found to be localized at the cell surface as identified by 

UniProt annotation were not identified by SignalP and SecretomeP databases (Fig. 1B). Overall, 1156 

proteins were determined to be candidate secretory proteins of USSC secretome, whereas 364 proteins 

were presumably contaminants from dead cells.  
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Neurite growth promoting factors secreted by USSC  

Several USSC secreted proteins were found to be associated with neurite growth or axonal 

regeneration. Comparison of all secreted proteins or proteins predicted to be secreted according to the 

literature revealed that USSC secret at least 31 proteins which are known to be involved in neurite 

growth or axonal regrowth (table 1) including the neurotrophic factors mesencephalic astrocyte-

derived neurotrophic factor (MANF) (37), neudesin (38) and neuron-derived neurotrophic factor 

(NDNF) (39) as well as the growth factors angiopoietin-2 (40), growth/differentiation factor 15 (GDF-

15) (41), hepatoma-derived growth factor (HDGF) (42), PDGF (43) and transforming growth factor-

beta1 /-2 (TGF-β1 / TGF-β2) (44-45). Moreover, we identified several matrix- and membrane-

associated proteins, e.g. decorin (46), fibulin-1 (47), netrin-4 (48), neuronal growth regulator 1 (49), 

neuroplastin (50-51),  noelin-2 (52), SPARC (53), tenascin (54), and the cytokines colony-stimulating 

factor 1 (CSF-1) (55), macrophage migration inhibitory factor (MIF) (56) as well as the chemokine 

stromal cell-derived factor 1 (SDF-1) (15). In addition, the serine protease inhibitors glia-derived nexin 

(serpinE2) (57), neuroserpin (58) and plasminogen activator inhibitor 1 (serpinE1) (59) as well as the 

extracellular chaperone clusterin (60-61) were secreted by USSC. In summary, these USSC secreted 

proteins represent a network of trophic factors which are likely to promote neurite growth in vitro as 

well as axonal regrowth after transplantation into the injured spinal cord in a synergistic way.  

 

Clustering of USSC secreted proteins into biological processes 

In order to gain an understanding of the complex composition of the USSC secretome, we assigned all 

proteins (1156 proteins) to biological processes by UniProt annotation resulting in biological processes 

associated with regeneration after spinal cord injury. USSC secreted proteins were assigned to cell 

communication (455 proteins), development (426 proteins), cell differentiation (307 proteins), cell 

proliferation (170 proteins) and cell growth (53 proteins) suggesting that USSC transplantation affects 

these biological processes relevant for nerve regeneration (Fig. 1C, multiple protein entries possible). 

Next, we performed enrichment analysis using DAVID bioinformatics database (DAVID 
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Bioinformatics Resources 6.7, (33)) to reveal biological processes overrepresented in USSC secretome. 

Several biological processes were identified to be significantly enriched which are associated with 

neurite growth, neuronal differentiation and survival as well as nerve regeneration, e.g. cell adhesion 

(111 proteins), cell motion (58 proteins), cytoskeleton organization (42 proteins) and extracellular 

matrix organization (45 proteins) (Fig. 2 and table S3 in supplementary material). Numerous 

proteins involved in cell adhesion expressed by USSC including cadherins, neuronal growth regulator 

1, neuropilin 1, neuroplastin, roundabout axon guidance receptor and tenascin C are known to have a 

strong impact on nerve regeneration. Moreover, the USSC secretome included proteins associated with 

the functional category blood vessel development (44 proteins). The latter is known to be important for 

regeneration after neuronal trauma, containing angiopoietin 2, SDF-1, matrix metallopeptidases MMP-

2, MMP-14, MMP-19, platelet-derived growth factor A (PDGFA), and TGF-β2. In addition, the 

biological process collagen fibril organization (18 proteins) included proteins associated with 

extracellular matrix, e.g. lumican as well as aggrecan and TGF-β2.  

 

Quantification of USSC secreted proteins 

Further we were interested to determine the concentration of identified proteins involved in relevant 

biological processes of neuronal regeneration. Therefore, we determined the protein concentrations 

based on a publication by Silva et al. (34) which enabled us to quantify 1020 proteins. For the USSC 

secretome we found that the protein concentrations varied in the range of 2-3 orders of magnitude with 

fibronectin as the highest abundant (88 pmol/ml) and quinone oxidoreductase (2 fmol/ml) as the 

lowest abundant protein detected by MS (table S4 in supplementary material). Quantified proteins 

were ranked into three classes based on their abundance. Enrichment analysis of the three abundance 

classes by DAVID bioinformatics database thereby using all secreted proteins as background revealed 

that the high abundant proteins (class I) are linked to extracellular matrix organization and ectoderm 

development (Fig. 3). Class II included proteins likewise associated with extracellular matrix 

organization but also with cytoskeleton organization and actin filament-based processes whereas class 
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III proteins are linked to biological adhesion and cell adhesion. Analysis further revealed that 26 of 

the 31 identified neurite growth promoting factors were quantifiable and evenly distributed in class II 

(71-2457 fmol/ml) and class III (2-71 fmol/ml). Class II included growth factors and extracellular 

matrix (ECM) associated proteins whereas class III mainly included growth factors and small 

cytokine-like proteins. In class I, four neurite growth promoting proteins (2-88 pmol/ml) have been 

found which are all associated with ECM.   

 

Validation of potential neurite growth promoting factors in a neurite 
outgrowth assay 

- Neutralization of candidate neurite growth promoting factors 

With intend to validate neurite growth promoting function of potential candidates we investigated 

selected proteins assigned to first two abundance classes in a neurite outgrowth assay in vitro. 

Therefore, we inhibited functionality of candidate proteins by neutralizing antibodies applied to 

USSC-CM 2h before application to primary rat cortical neurons. Cortical neurons were incubated for 

48h, fixed and stained with a neuron-specific antibody (β-III-tubulin) to visualize cell bodies and 

neurites and analyzed by automated scanning with a Cellomics® ArrayScan® VTI HCS Reader. 

Astrocyte conditioned medium known to enhance neuronal survival and neurite growth in vitro (11, 36, 

62) served as positive control for culture preparations in each experiment (data not shown). Our data 

indicate that neutralization of SPARC as well as PEDF (also known as serpinF1) in USSC-CM was 

effective with 4 µg/ml neutralizing antibody each resulting in significantly decreased neurite growth 

compared to control cultures treated with USSC-CM (Fig. 4). Neurites were significantly shorter 

(67.6% ± 2.3 as well as 74.8% ± 4.1 of control) due to neutralization of SPARC and PEDF, 

respectively. Neutralizing antibodies against cystatin C (CST3) (Fig. 4) had no effect on neurite 

growth, which also indicates that application of immunoglobulin does not in general suppress neurite 

growth. Cell survival was unchanged upon neutralization of proteins (data not shown).  
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- Stimulation of neurite growth by application of candidate neurite growth   
promoting factors 

To further validate candidate proteins, we applied recombinant proteins in N2 (negative) control 

medium on primary cortical neurons and analyzed neurite growth after 48h of incubation. 

Recombinant SPARC led to significantly enhanced neurite growth after application on cortical 

neurons up to 364.6 % ± 74.4 (Fig. 5). PEDF application alone had a small effect on neurite growth 

(139.7% ± 18.6, p = 0.07) which did not meet our significance criteria. Again, cell survival was not 

influenced by application of recombinant proteins (data not shown). In summary, neutralization of 

SPARC and PEDF in USSC-CM resulted in significantly decreased neurite growth. However, the 

decline in neurite growth did not reach the low basal levels of N2 control medium. We demonstrated 

further that application of recombinant SPARC to N2 medium enhanced neurite growth, but less 

strong than USSC conditioned medium.    

 

Discussion 

USSC are a promising tool to support regeneration after spinal cord injury (SCI), since this stem cell 

type was previously shown to improve axonal regeneration and tissue sparing after transplantation into 

an acute rat SCI model (11). Beside axonal regeneration, support of cell survival and modulation of the 

ECM as well as angiogenesis are main targets for therapeutic interventions after SCI. As USSC secrete 

factors enhancing neurite growth and neuronal survival in vitro, we were interested to identify and 

characterize these factors in the USSC secretome to gain insight into potential paracrine mechanisms 

leading to enhanced regeneration after USSC transplantation. In the present study we established a 

USSC secretome comprising 1156 proteins and revealed that USSC release at least 31 well-established 

neurite growth promoting factors. In addition, USSC release proteins which are related to several 

biological processes involved in nerve regeneration. We were able to functionally validate two of the 

candidate neurite growth promoting factors by neurite outgrowth assays in vitro validating our 
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proteomic approach and confirming a paracrine mechanism of regeneration support for transplanted 

USSC in SCI.  

 

Secretion of proteins involved in neurite growth or axonal regeneration 

By means of secretome approach applying LC-MS/MS we determined 1156 proteins, whereof at least 

31 proteins in the USSC secretome are already known to be associated with neurite growth or axonal 

regeneration. The group of 31 proteins include SPARC and thrombospondin-1 (TSP-1) which together 

with tenascin C modulate interactions with ECM molecules (63). We further identified netrin-4 known 

to attract or repel growing axons depending on neuron type (48). PDGF and TGF-β1, both secreted by 

USSC, are known to interact with SPARC (64-66), indicating a solid network between the secreted 

factors. Moreover, USSC secrete MIF which directs the initial neurite outgrowth from the 

statoacoustic ganglion (SAG) to the developing inner ear (56), and NDNF which could together with 

MANF, HDGF and neudesin stimulate neurite growth as well as migration, cell growth and survival 

(37-39, 42). Recently, periostin, which is normally expressed in bone and muscles, has been shown to 

play an essential role in neurite growth and axonal regeneration after SCI to overcome the inhibitory 

effect of scar-associated molecules by signaling through focal adhesion kinase and Akt (67). 

Progranulin has similar characteristics like neurotrophins as it is cleaved into mature granulins by 

extracellular proteases and has been shown to stimulate neurite growth (68-69). TGF-β2 which is an 

immunomodulatory factor normally facilitating ECM synthesis resulting in enhanced scar formation 

has also been shown to stimulate neurite growth in cultured dorsal root ganglion neurons (44). Using 

Hi-N method we showed that the identified proteins are distributed over a concentration range from 

fmol/ml - pmol/ml. As expected, growth factors were present at low concentration (fmol/ml range), 

whereas ECM associated proteins were highly abundant (pmol/ml range) in the USSC secretome. 

However, it has been shown that this kind of quantification method is associated with large 

quantification errors of small proteins (70) which likely depend on limited number of peptides as well 

as protein-to-protein variation. As our experiments were not designed for protein quantification in the 
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first instance we took prior advantage of Hi-N method allowing quantification of hundreds of proteins 

in parallel to get a first impression about the distribution of proteins’ concentration in USSC 

secretome. Although, this global approach gave acceptable results with mean standard deviation from 

49 - 115% concentrations of specific proteins need confirmation by complementary techniques.   

Altogether, these different neurite growth promoting factors which were expressed by USSC, either 

alone or in combination, are likely to participate in neurite growth stimulation of cultured primary 

cortical neurons as well as to support axonal regrowth observed after USSC transplantation into the 

injured spinal cord. The combined secretion of neurite growth promoting factors as well as inhibitory 

proteins led to enhanced neurite growth as well as to axonal regeneration indicating an over-all 

supportive balance of USSC secreted proteins for regeneration associated processes. 

Native USSC cultured in serum-containing medium were shown to release several cytokines and 

growth factors (13). In the present study, expression of CSF and SDF-1α which are known to be 

directly or indirectly involved in neurite growth or axonal regeneration (14-15, 55) was confirmed 

under serum-free conditions. However, expression of the other proteins identified in the former work 

of Kögler et al. (13) was not detected in our experiments, suggesting changes in the USSC expression 

profile under different culture conditions as well as the different detection modalities of the applied 

analytical platforms.  

 

 

USSC secrete proteins involved in multiple regeneration associated 
processes 

To establish the USSC secretome we performed rigorous bioinformatics data analysis. We considered 

accessible knowledge about proven extracellular localization and further we took advantage of the two 

bioinformatics tools SignalP and SecretomeP allowing prediction of classical and non-classical protein 

secretion, respectively. From the 1520 proteins identified by LC-MS/MS 1156 are known or were 

predicted to be secreted including 385 classically secreted proteins and 276 proteins secreted via non-

classical pathways. 364 proteins did not match our criteria and were removed from our candidate list. 
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We are confident that our approach of combining experimental data with bioinformatics prediction 

tools is straightforward to establish USSC secretome. This holds true especially for classical protein 

secretion by signal peptide which is well studied and prediction algorithms like e.g. SignalP were 

successfully proven. In contrast, SecretomeP which based on simplified assumption that extracellular 

proteins share the same characteristics have to be taken with caution and should only be applied in 

combination with experimental data. 

 

Secretion of proteins involved in extracellular matrix organization 

Further data interrogation by annotation clustering revealed that USSC secrete proteins which are 

involved in differentiation and developmental processes. For more detailed characterization of the 

USSC secretome, proteins were assigned GO terms by DAVID bioinformatics database revealing that 

USSC secrete proteins associated with biological processes involved in regeneration after SCI.  

Several proteins of the USSC secretome were assigned to cell adhesion, extracellular structure 

organization and extracellular matrix organization, e.g., the chondroitin sulfate proteoglycan (CSPG) 

aggrecan which is known to inhibit axonal regrowth but also the growth promoting decorin which 

antagonizes scar formation (46). USSC further secrete laminin subunits which might promote neural 

differentiation and migration of neural precursor cells after CNS lesion and together with nidogen-1 

could guide growth cone turning (71) as well as the heparan sulphate proteoglycan agrin which is 

involved in synaptogenesis during regeneration (72). Thus, our results suggest that USSC strongly 

interact with the local environment after transplantation into the injured spinal cord via modifications 

of ECM structures as well as cell-cell-contact. Previous studies described that even in the presence of 

inhibitory molecules successful axon growth after injury were achieved when a prevalence of growth 

permissive signals is present (73-74). Thus, USSC release ECM proteins which seem to shift the 

balance towards an axon growth permissive microenvironment thereby enhancing axonal regrowth in 

vivo.  

 



 

 

20 

Secretion of proteins involved in angiogenesis 

Beside axonal regrowth, regulation of cell adhesion and ECM modulation, angiogenesis is essential 

for proper regeneration as neurons have high metabolic requirements. Despite massive blood vessel 

sprouting, new blood vessels exhibit abnormal permeability after SCI suggesting limited functionality 

(75). USSC are likely to promote angiogenesis since these cells secrete several proteins assigned to 

blood vessel development or blood vessel morphogenesis, e.g., angiopoietin-2, angiopoietin-like 4, 

MMP-2, -14, and -19, PDGF and TGF-β which together with guidance molecules such as netrin-4, 

semaphorin-7 and slit-3 could enhance blood vessel formation during regeneration.  

USSC further secrete proteins grouped into GO terms cell motion and regulation of cell migration 

indicating that USSC might influence migration of endogenous neural precursor cells and endothelial 

as well as immune cells. Enhanced migration of precursor cells derived from the ependymal zone of 

the central canal could led to better recovery since these cells have been shown to differentiate into 

oligodendroglial cells (76). Since the SDF-1/CXCR4 axis is suggested to play a key role in migration 

and differentiation of adult endogenous stem cells and oligodendrocyte precursor cells after SCI (77-

79), USSC expressed SDF-1 could influence precursor cell properties. In addition, secreted CSF-1, 

laminin subtypes, neuropilin-1, PDGF, migration and invasion enhancer 1 (MIEN-1) and TGF-β could 

regulate migration of precursor cells, astrocytes, fibroblasts and immune cells which contribute to 

proper regeneration.  

 

Secretion of proteins involved in cytoskeletal organization 

Most of the above mentioned proteins are known to be secreted via the classical pathway. In addition, 

the USSC secretome includes several proteins predicted to be either secreted by non-classical 

pathways or annotated as extracellular by UniProt database. These proteins were found to be enriched 

in biological processes cytoskeleton organization, e.g., capping proteins, actin-related protein 

complexes and gelsolin which is known to play a role in neurite growth (80). Together with syntaxin, 

synaptotagmin and kinesins which were also found in the USSC secretome these proteins potentially 
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result from exocytosis processes as these proteins are known to be involved in exocytosis. 

Furthermore, cytoskeleton proteins could originate from shedding due to their localization at the cell 

membrane, in particular ezrin and moesin both identified in the USSC secretome which link cell 

surface receptors and the actin cytoskeleton. It is unclear whether these proteins were secreted under 

certain conditions (25), but we cannot exclude that these proteins partially originate from dead cells. 

However, the biological processes related to the cytoskeleton included classically secreted proteins 

normally directly or indirectly regulating the dynamic remodeling of actin cytoskeleton (PDGF, SDF-

1) indicating that USSC could also influence cytoskeleton dynamics of regenerating axons. By protein 

quantification we revealed that biological processes like, e.g., extracellular matrix organization and 

ectoderm development are enriched among highly abundant proteins, whereas proteins involved in cell 

adhesion are enriched within the group of low abundant proteins. We only can speculate if the 

abundance of a protein or a protein family is a measure for relevance of the associated biological 

process since both low abundant proteins like neurotrophins and high abundant ECM proteins are 

known to be critical for regeneration.  

 

Functional analysis of candidate proteins 

SPARC is one of the most abundant proteins identified in the USSC secretome. It is a multifunctional 

glycoprotein that binds to collagens and vitronectins and modulates the activity of PDGF, FGF-2 and 

VEGF. It was further demonstrated that SPARC stimulates Schwann cells to facilitate axonal 

regeneration via laminin-1 and TGF-β1 signaling (53). Schwann cells also express SPARC which have 

been shown to promote both neurite growth and survival of purified retinal ganglion cells (81). 

SPARC is discussed to have synergistic effects on classical neurotrophins enhancing neurite 

outgrowth of retinal ganglion cells (82-83). USSC-CM has been shown to stimulate neurite growth of 

primary cortical neurons (11). In the present study, we demonstrated that neurite growth is 

significantly decreased when a SPARC neutralizing antibody is applied to USSC-CM. On cortical 

neurons, recombinant SPARC directly enhances neurite growth. Therefore, we conclude that cortical 
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neurons respond to SPARC signaling and that SPARC is one of the major neurite growth promoting 

factors secreted by USSC. 

Recombinant PEDF (serpinF1) has been applied at low concentration representing the rather low 

amounts identified in USSC-CM, resulting only in a slightly increased neurite growth. On the other 

hand, neutralization resulted in a significant decrease in neurite growth, similar in range as SPARC 

antibody, indicating that PEDF may act in combination with other USSC secreted factors to stimulate 

cortical neurite growth. PEDF has been shown to enhance neuronal survival as well as neurite growth 

of retinoblastoma cells (84), cerebellar granule cells (85) and spinal motor neurons (86). Under our 

culture conditions, SPARC and PEDF did not affect neuronal survival of cortical neurons, indicating 

that other USSC secreted proteins promote neuron survival of cultured cortical neurons. In vivo, both 

proteins are likely to stimulate axonal regrowth directly but could also have indirect effects on 

regeneration via stimulation of glial cells or cell survival.  

 

Conclusions 

The lack of regeneration after SCI might be overcome by transplantation of stem cells directly into the 

lesion site, which locally release trophic factors and thus support axonal regrowth. The present study 

demonstrates that the regenerative phenotype of USSC secretome bases on a complex network of 

proteins associated with several biological processes that lead to enhanced neurite growth in vitro and 

therefore suggest a relevant role on axonal regeneration in vivo. The complex network of trophic 

factors secreted by USSC seems to act synergistically on several levels of nerve regeneration. With 

this observation it appears that transplantation of somatic stem cells instead or in combination with 

defined factors has great potential in regenerative medicine.  
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Figures legends 

Fig. 1: Categorization of proteins identified in USSC secretome by LC-MS/MS. (A) Based on 
UniProt annotation, 993 proteins were found to be localized extracellularly. The USSC secretome 
further included 884 membrane associated proteins which might be found in the secretome due to 
shedding and 118 cell surface proteins (multiple protein entries possible). In total, 1520 proteins were 
determined. (B) SignalP and SecretomeP algorithms revealed that 385 proteins are classically secreted 
and 276 proteins are non-classically secreted. GO slim term extracellular included 487 proteins which 
were not predicted as secreted by SignalP and SecretomeP. Additionally, 8 proteins were predicted to 
be localized at the cell surface. Overall, we identified 1156 proteins predicted to be secreted and 364 
contaminants. (C) These 1156 were assigned biological processes which in part play important roles 
during nerve regeneration (multiple protein entries possible) such as cell differentiation, development, 
cell communication and cell division. 

 

Fig. 2: Subset of biological processes associated with neurite growth, neuron differentiation, 
survival and regeneration enriched in comparison to all secreted proteins. All proteins identified 
in the USSC secretome by LC-MS/MS excluding contaminants were included (multiple protein entries 
possible). GO terms were evaluated with DAVID database with a false discoverer rate (FDR) p < 0.05.  

 

Fig. 3: Concentration range of neurite growth promoting factors within USSC secretome. Protein 
concentrations (Log10 fmol/ml) of USSC secretome were ranked into three classes. For each class 
neurite growth promoting factors (NGPF) with corresponding concentration (fmol/ml) were assigned. 
Enrichment analysis was applied for each abundance class. GO terms important for regeneration are 
indicated.  
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Fig. 4: Reduced neurite growth after immune neutralization of neurite growth promoting 
factors.  (A) Neutralization of SPARC and PEDF leads to reduced neurite growth of cortical neurons 
compared to USSC-CM. Neutralization of CST3 had no significant effect on neurite growth. Red 
arrow: neuron with short neurite; white arrow: long neurite; red arrowhead: nuclei but no neuron, 
excluded from quantification; white arrowhead: counted cell body of a neuron; interrupted red arrow: 
artifact excluded from quantification. Neurites labeled by the Neuronal Profiling v3.5 BioApplication 
software (yellow labeled neurites) were included into quantification. See also enlarged sections for 
further details. (B) Quantification of relative neurite length (%) compared to USSC-CM control. 
Results derived from at least three independent experiments are presented as mean values ± SEM. * p 
< 0.05, ** p < 0.01 (Student´s t-test).  

 

Fig. 5: Enhanced neurite growth by application of recombinant proteins.  (A) Application of 
recombinant SPARC leads to enhanced neurite growth of cortical neurons compared to N2 control 
medium. Application of recombinant PEDF has only minor effects on neurite growth. Neurites labeled 
by the Neuronal Profiling v3.5 BioApplication software (yellow labeled neurites) were included into 
quantification. See also enlarged sections for further details. (B) Quantification of relative neurite 
length (%) compared to N2 control medium. Results derived from at least three independent 
experiments are presented as mean values ± SEM. * p < 0.05 (Student´s t-test).  

 
 

Tables  

Table 1: Neurite growth promoting factors identified in the USSC secretome. Overall, 31 proteins 
were identified in the USSC secretome (contaminants excluded) which are known to be directly 
involved in neurite growth.  

(see also page 13, results) 
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Figures 

Fig. 1 (see also page 12-14, results) 
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Fig. 2 (see also page 13-14, results) 

 

 

Fig. 3 (see also page 14-15, results) 
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Fig. 4 (see also page 15, results) 
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Fig. 5 (see also page 16, results) 
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